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DIFFUSION APPROXIMATIONS TO OUTPUT PROCESSES OF NON-LINEAR SYSTEMS

WITH WIDE BAN D INPUTS , AND APPLICATIONS

* **Harold J. Kushner

Abstract

Many problems in communication theory involve approximations

of a Markov type to outputs of non-linear (feedback or not) systems,

often so that Fokker-Planck techniques can be used. A general

and powerful method is presented for getting diffusion approxima-

tions to outputs of systems with wide band inputs. The input is

pararneterized by c and as c -
~~ 0 the band width goes to (loosely

speaking). It is proved , under reasonable conditions on the

systems and noise , that tIB sequence of system output processes

converges weakly to a Markov diffusion process , which is charac-

terized completely . Many communication systems f it the model of

the paper and , in order to make mathematical sense out of many

common developments of system properties , assumptions such as

those of this paper are often required. The usefulness and

relative ease of use of the method is illustrated by application

to three examples: (a) phase locked ioop, where a Markov diffu-
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sion approximation of the error process is developed , (b) adaptive

antenna system, where an asymptotic analysis of the equations for

the system is given , (c) diffusion approximation to the output of

a hard limiter followed by a band pass filter; input-output S/N

ratios are developed (a version of a classical problem of Daven-

port). Difficulties with the .isual heuristic approaches to (a),

(b) are discussed . The method is versatile and the models quite

general. Since weak convergence methods are used , the approximate

“limits” yield approximations to many types of functionals of the

actual systems.
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1. Introduction

Many problems in communication theory involve representations

of (or approximations to) outputs of devices (l inear , nonl inear ,

feedback) whose inputs are signals added to a relatively wide

band noise; e.g., phase locked loops (PLL), adaptive antenna

arrays or automatic gain controls. Normally , the development

of the output representation (or approximation) requires special

assumptions (e.g., sinusoidal inputs, Gaussian noise), and

various heuristic arguments are usually needed to approximate

the output by Markov diffusion processes whose Fokker-Planck

equation is to be analyzed in order to get some sort of approx-

imation to the statistics of the true output process.

In this paper , a rather powerful method is presented for

getting either the usual or related approximations, under

assumptions which are reasonable, explici t, and often weaker

than the usual ones. The relative ease of use of the method

is illustrated here by applications to three rather different

problems: (a) the PLL, (b) an adaptive antenna array , (c) a

version of Davenport’s [1 1 result on the output of a band

limiter followed by a zonal filter.

In particular , denote the input noise by n~~(.) where as ~

o the bandwidth (EN) ~ ~~~. Under conditions to be imposed, the se-

quence of outputs (with input signal s(s) plus noise nC (.)) will con-

verge to a process whose state variable representation is a

Markov diffusion process, and we will readily be able to find

that process impi1è’i~
’l~y ~ru ekp).i~x~iy ~~ ~~~ ~~~~~~~~~~~ the(;l 

~~~~~~~~~~ ‘r~. t~~. ~~~
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examples below) many of the current heuristic arguments use

a similar assumption on the noise - at least, the “output

approximation ” may not make sense unless it is viewed as the

limit of a sequence of outputs in our sense.

Our method has the advantage that the assumptions are

clearly seen , it is applicable to a great variety of situations,

and the terms which a more heuristic analysis would drop can be

clearly seen. The limit is in the sense of weak convergence of

probability measures 1 2). Thus the distributions of a great

variety of functionals of the sequence of outputs (with para-

meter c) converge to that of the limit. Furthermore , under cer-

tain circumstances additional information on approximations to

stationary measures can be obtained. Also , nonstationary inputs

can be accommodated . The fact that y(~ ) can occur nonlinearly

in (2.1) — (2.3) below is important in the applications which

involve some nonlinear processing.

In the communications literature, the problem of obtaining

the (Markov-diffusion) limit of the sequence of outputs of a

system as the input noise SW tends to was perhaps initiated by

Wong and Zakai [3], 14 ] in a very special case. Later cases

were treated by KlBzminskii [5], Papanicolaou and Kohler [6],

Papanicolaou and Blankenship f 7] and Kushner [ 8], [ 9]. The

treatment here , based on a semigroup approximation of Kurtz [10].

was developed in ( 8), 1 9] to get limit theorems of the desired
type. H

-i 
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In Section 2, the basic model is discussed , together with

the general scheme of Kurtz (10), and the main approximation

theorems appear in Section 3. Sections 4, 5 and 6 deal with the

three problem classes (a), (b) and Cc) mentioned above. The

theory is developed first for the canonical models (2.l)-(2.3) .

Often in applications , such as those in Sections 4—6 , the models

are a little different. But, as we will see, the development

give for the canonical model tells us exactly how to proceed in

the other cases. In a project currently under way , the method

is used to study a class of PLL ’s with non-linear filters (which

seems to have certain advantages), a problem which has not been

treated and for which there seems to be no other “natural” method

at present.

2. The Basic Model

Noise model. First, we derive the noise model. In order

to conveniently get a class of processes n C(.) whose ~w goes to

and energy/uni t BW converges to a constant ~ 0 as c 0, we

work with ~~C ( . )  of the form n6(t) = yC (t)/e , where y C (t) = y(t/E2),

and y is a stationary process. Other forms are possible . In

particular , see [ 9], where nC (s) is built up from a sequence

of small correlated effects, eac.h of whose “size” + 0 and the

number of which (in any f inite interval) goes to ~ as c ~~- 0. j
Other forms are possible - and yield rather similar results.

One way or another , an explicit model for ~~C ( . )  must be given

which allows BW -* as c -‘- 0. The selected model is one useful

s—’ -—
~~~~~~~~~~~~~~~~~ - -

~~~~~~ — . .~‘ — -~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



6.

choice. As seen below , it has the desired properties. The

method to be developed can handle many other useful noise models

as well. Basically, the noise must be parametrized in such a way

that Theorem .J. can be adapted to the problem.

Suppose that y(~ ) has a spectral distribution S(w). Then

that of n E (..) is S(c2w) S
~~
(w). See Fig . 1. Note that the

t/c2 scaling spreads the BW (and the “center” frequency in the

band if there is one (as in Fig. lb)) and the 1/c scale keeps

the energy per unit BW from degenerating. Without the 1/c

factor the energy per unit SW goes to zero as c -
~ 0, and all

the limits are “noiseless ” . We do not require that y(.) has a

spectral distribution. The above remark is for motivation only.

System models. There are several canonical forms with which

we can work. The system outputs can be representable (state

variable form) by one of the related ODEs (ordinary differential

equations)

(2.1) = G(xC ,y C ,t) + F(xC ,y C ,t)/c,

(2.2) = Gc (x
c ,y c ,t) + Fc (x

c ,y c ,t)/c,

(2.3) = Gc (x
c ,t) + Fc (x

c ,y C,t)/C , X6 (O) E Rr ,

Euclidean r—space.

—-_____ 
fl - - - , - - -~~—-~~~~~ —~~~~~~~~~~~~ -
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In order to simplify the development , we deal mostli with

(2.1), and then show how to extend the result. As will be clearly

seen in Sections 4-6, the forms (2.l)-(2.3) cover many common

cases , and the method to be described can readily be extended to

many other cases. The t argument accounts for the presence of the

signal or other non-stationarities (see Sections 4-6).

Weak convergence. Let Dr [Q ,co) be the space of R
r_valued

functions on [0,°~) which are right continuous , have left-hand

limits and let the space have the Skorokhod topology ( 1  2 1,

Section 14), as is usual in studies of weak convergence. Each

process xC ( has paths in Dr[O,co) . In fact the paths are con-

tinuoue. Let x C - ) be a process whose paths are also in Dr [O ,00).
c D 

*We say that x ( )  + x (.) (weak convergence of the corresponding

measures) if f for each bounded continuous real-valued f () on
r .D (0 ,co ) ,  Ef (x ( . ) )  -

~~ Ef(x(~ )). This is a considerable general-

ization of convergence in distribution , and is a concept which

is very useful in many areas of probability and statistics. In

addition , if xC ( )  -‘ x(•) weakly in Dr(O ,CO) and f(.) is bounded

measurable and only almost everywhere continuous with respect to

x () measure , then Ef(XC (.)) -~~ Ef(x(.)) as c -
~~ 0 also.

A sequence {x C (.)} is tight if f, for each 6 > 0, there is

a compact set K6 in D
r [O,CO) such that sup6P{x

C (.) E K6) < 6.

Suppose that x (~ ) has continuous paths w.p. 1. Then the

two usual steps in proving weak convergence are: (i) showing

convergence of finite-dimensional distribution of {xC (.)} to

— ..-—-—=.•- ~~~ - - -~ ~~~~~~~~— — —-•—.-- . - .- ---
~~. 

- - -
~ 

- .  -—— —

_____ -— .~~~~— o e
~~~
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those of x (.); (ii) showing tightness of {x
1 (.)}. These imp ly

the weak convergence. The theorems given be) ow do all this

efficiently. Our limit process x(- ) will be a Markov diffusion ,

and the theorems below allow us to calculate its infinitesimal

operator. For more detail on weak convergence see ( 2 ] .

An example of the limit operator. Let denote the

set of bounded continuous functions on [0 ,~”) x R
r with compact

support , ~~~~~~~~~ the subset with continuous a—partial t-deri—

vatives and s-partial x-derivatives , and let ~~ denote the

closure of under uniform convergence . Under conditions to

be imposed (including EF(x ,y(s) ,t) = 0 for all x, t), and with

the model (2.1), the infinitesimal operator (s/ at + A) of the
limit process x (-) is (acting on

(2.4) (~/~t + A)f(x ,t) = ft (x,t) + Ef ’ (x ,-t)G(x,y(O),t)

+ JEF’(x ,y(0),t)(F’(x ,y(s),t)f
~~
(x,t))

~
ds

• 
~ 
bi (X s t)fx. (x~

t) + 
~

where b (.,.) and a(.,.) = {a~3
(.,.)) are defined in the obvious

manner , and we assume that a(.,.) is symmetrized to conform with

the usual form of the operator A . Define G(x,t) = EG(x,y(Q),t).

—- 

-

-- -~~~~~~~~~~- - - -  - - -
- 

- - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~ 
-
~~~~~~~~~

—-
~~
-

~~~~~~~ --- - -b----- - -I ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~—‘.w - --.~~~~~~~ ~~~~~~~~~~ 
-



If there is a matrix a (- ,.) such that a(- , )  =

(.,.)o (.,.)’/2 , then there is a standard vector—valued Wiener

process B(•) such that x(~~) has the Ito equation representation

(2.5) dx = b(x ,t)dt + a ( x ,t)dB.

This is the case in the examples . Note that b (x,t) contains two

components - the first is ~ (x,t) and the second is

JEF ’ (x,y(a),t)F(x,y(O),t)ds, where we define

= 

I 
~~~~ :: :r j

rx 1 rxr

The last term arises for the same reasons that cause the Wong-

Zakai (3], [4] correction term ; i.e. the interaction between

xC (t) and n
C (t). As it turns out, the typical heuristic argu-

ments used to deal with problems (a), (b) obtain “limits”

without the “correction term”.

Some definitions. Let E denote expectation conditioned

on n C ( s ) ,  s < t. If kC (.) is an t~,t function such that for

each T < ~ and for (w,t) E ~ 
x [0 ,T ] ,  it is measurable on the

product c—algebra ~~(0,T] x ~~ (~~C (g), s<T) , we say

that k6 E ~~~~ 9C~~ the class of progressively measurable functions.

*~~~[O ,T) is the Bore l algebra over [0 ,T). 

.—• .-- ,—- ~~~—--•- —-——- - - - - - -  _ _ _ _ _ _ _ _  

---- - -•-- -~4.- ~~~~~~~~~ 
_ _ _ _ _ _
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Let k~ and k~ be in V
E
. We say that p_lim~k~ = kE if f

sup sup
tEIk~~

(t) and Elk~~(t)_k
C (t )  I -

~ 0 as n -
~~ for each

t. Let ..~~~~~~~ C be the subclass of functions k such that
A CsuptElk (t) < ~~. Let denote the subset of St of p-right

continuous functions ; k being p-right continuous means that

k E .~/ and fo r each t, E I k ( t + s ) - k ( t )  I -
~ 0 as s 4 0. If (some

version of) p_lim5~ 0
[E~k

C (t+s)_k C (t)]/s exists in Se°~ , it is

called AC
k
C and we say that kC E ~~~~~~~ the domain of the

operator AC , an operator which is analogous to the weak inf in-

itesimal operator of a Markov semigroup. If kE E ~~~ we say

that p—lim kC = 0 if sup
~ ,~

EIk 6(t)I < and EIk C (t) I -
~ 0 as

c -
~~ 0 for each t. The functions introduced in Theorem 2 and it

its proof have progressively measurable versions.

Kurtz ’s semigroup approximation theorem [10 ], adapted to

our_purposes. We treat t as a component of the state vector ,

in order to allow us to work with nonstationary cases. The

conditions will be commented on below. They are more readily

verifiable than may be apparent. The following theorem [3] is

the basis of our method .

C C r+r ’Theorem 1. Let Z C . )  = Cx (),y ( s ) )  be a sequence of R -

valued right continuous processes, x(~ ) a (R
X _valued) Markov

0. ,\ 
Iprocess with semigroup T() mapping ~~

‘ into ~~
‘ and which is

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I~A



A
strongly continuous on ~~~

‘ (sup norm ). For some > 0 and dense

set ~ C~~~~(which will be ~~~~~~~~~~ let Range (.~-A—a /a t~ ) be

dense in ~~~~, where A+~/~t is the infinitesimal operator of the

process (x(t),t). Suppose that, for each f C ~~~~, there is a

sequence {f6} of progressively measurable functions such that

C “ Cf C ~~(A ) and

• C Cp—lim (f ( )—f(x ( ) ) ]  = 0

p_ lim [AC f
C (.)_ (A+~ /at)f(x

E (.),.)] = O.

Then if x C (O) -
~ x(0) in distribution, the finite-dimensional

distributions of xC (.) converge to those of x(’) (with initial

condition x(0)) as c -
~ 0.

Remark. There is a similar theorem for tightness of {xC (.)}

which is particularly useful for the types of problems encoun-

tered here. In fact , if the finite-dimensional distributions

converge (Theorem 1), a proof of tightness under reasonable

conditions is not hard . See [8, Theorem 2, Part 4]

for a method .

In (2.4) the operator (A+~/3t) was defined on a set

In Theorem 1, (A+a /at) is considered on a dense subset

~ E ~~
‘ (which 

~~~

‘

~~~~~

‘ is). The question of concern is: does

this restriction of (A+~/~t) define the infinitesimal operator
A

of a Markov semigroup un iquely? If the closure in ~~
‘ of this

restricted operator is the infinitesimal operator of x (), then

_ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _ _  
i

‘ I
.! -  ~~~~~~~~~~~ • I 

- -
- 
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A+~/~ t def ines  T (~~) uniquely. Since we can only work (in the

proofs) with nice classes such as ~~~~ ~~~~~~~~~~~ - and not with

the domain of the infinitesimal operator of x(~~), it is important

to know
•
if ~ is big enough to yield the limit uniquely. In

fact, the condition on the density of the range holds in all the

cases of Sections 4—6 , and is rather unrestrictive.

Due to lack of space , it is not possible to discuss the

relative advantages of Theorem 1 (or Theorems 2 and 3) to the

approximation problem over more classical semigroup approxima-

tion methods. It seems to be much easier to use in the usual

problems encountered in control and communication theory

and the relevant proofs (e.g. that of Theorem 2) are shorter

and use better conditions.

The “density ” condition together with the condition on

strong continuity of T(~ ) can be eliminated by an alternative

approach [11] which replaces them by the simple assumption. that

to the coefficients a(•,- ) and b (•) of A there corresponds a

stochastic differential equation with a unique solution (in the

sense of distributions). Thj~ condition also holds in our

examples. The proof of the theorem corresponding to Theorem 2

in that case would be almost the same. We stick to an approach

based on Theorem 1 because it is alao applicable and the refer-

ences are currently available.

We next give some specializations of the theorem suitable

for our applications. Theorem 1 is given in the general form

—- -~4 ~~~~~
- __
~~ i~~~~~

,-

~~~~~~~~~~~ ~~~~~9 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — 

I



because it shows how to modify the following specializations when

variants are required for particular cases. We omit explicit

discussion of tightness , due to lack of space. Our conditions

will guarantee the tightness, via the methods of proof of [8],

3. The Main Convergence and Approximation Theorems

We start with the form (2.1) and bounded y(.), because it

is good enough for many applications and illustrates the tech-

nique with the least notational encumbrance. Then we discuss

the case where y(•) is unbounded and F(x,y,t)/c = F(x ,t)y/c.

Finally , we remark on the cases (2.2)-(2.3), which actually occur

in some of the examples.

Assumptions

(Al) ~~~~~~~ and G(~~,~~,-) are continuous, the first

(second, resp.) having two (one, resp .) continuous

(in x , y ,  t) partial x—derivatives.

(A2) IF (x ,y , t) I + IG (x ,y,tH <M (1+ Ix l ), for some constant

M.

(A3) y () is station~~X, 
bounded, right-continuous,

EF (x,y(s),t) = 0, each x , t, and y (•) is strong

mixing in the sense that there is a function p( .)

• • 1i2satisfying fp (s)ds < and
0

u’- . : -  ~~~~~~~~~~~~~~~ ‘:~~~‘~~~~~‘ -



sup P(B!A )—P (B)I <

A ,B, S

A E ~~(y(u),u<s), BE  ~~(y(u),u>s+t).

(Such a condition is quite common in the literature

on applications of wcak convergence theory. It is

satisfied by truncated Gaussian processes with

finite SW and continuous spectrum , by bounded

ergodic Markov chains, etc.)

• A l 3
(A4) The operator A+~/3t is the restriction to 

~~
‘
~~~

‘ 2~.
the infinitesimal operator of a strong Markov process

A A
with semigroup T () mapping ~~‘ into ~~ and being

A

strongly continuous on

(A5) A+~/~t on its domain in ~~
‘ is determined by -

its action on

Remark. (A4)-(A5) hold in our cases and in the usual situations

which arise in communication theory. They pertain only to

the limit x(.), and not to the xC (.). Further remarks appear

in [8] . See also the comments at the end of the last section

concerning simplifying the conditions .

Theorem 2. Let xC (O) -
~ x (0) in distribution. Then, under

(Al)—(A5), {xC (.)} converges weakly in Dr [O,00) to x(•), a

diffusion whose infinitesimal operator (~/3t+A) is given by

(2.4), and with initial condition x(0).

*,___

~

, -—- 5-. ~~~~~~~~~~~~~~~~~~~~~~ -
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Outline of proof. The proof for the non-time-dependent

case appears in [ 8 1, and is a direct application of Theorem 1

(for convergence of finite-dimensional distributions), and

another result of [10] for tightness. Given f C ~~~~~~~~~~~~~~~ the

main object is to get the sequence {f C (.)} of Theorem 1, and to

verify the p—lim requirement of that theorem . We outline this

because various extensions of the method are needed for the

examples, and it is useful to have an explicit outline for the

time-dependent case, since the forms of some of the functions are

a little different. Reference 18] dealt only with G, F not

depending on time, but the time-dependent case is important for

applications and requires only a few changes from the treatment

in [8]. The method of getting the f C ( . )  is adapted from the

averaging method in [7).

Let f C ~~~~~~~~~~~~ We construct fC in the form fC (t) =

f(x~~(t),t) + 
0f

C (xC (t),t). Our f~ is the cf~ of [8], our

f~ is split off from the C
2f~ term in [8 ] and our f~ is the

remainder of the c2f~ term there. The terms are modified to

account for the explicit t—dependence of f, G, F. Note that

(use x = XC (t) for notational simplicity)

(3.1) AC f ( x ,t) = ft (x ,t) + f~~(x,t)[G(x ,y C (t),t) + F(x ,y C (t),t)/c).

Def ine f~~(x,t) by

p

_ _ _ _ _ _ _ _ _  _ _  1—~~~~~~ — 
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f~ (x,t) = f E ~~~~(x,t+s)[G(x,y
C (t+s),t+s)_G(x ,t+s)]ds

= C
2 J E~~f~~ (X ,t+C

2S ) ( G ( X ,y(~~~+s ) , t+C
2S) G(x ,t+C

2S ) ]d S .

0 
C

The integral exists for each e > 0 by (Al), (A3) and the compact

support of f. Also f~~(t) f~~(x
C (t),t) = 0(c2) and f~~(~ ) ~

Again use x x C (t). Then

(3.2) ACf~~(x,t) = ~f~~(x,t)G(x ,y 6(t),t) + f~~(x,t)G(x,t) + 0(C) termE

Note that AC [f(x ,t)+f~~(x,t)] = ft(x,t) + f~~(x,t)~~(x,t) +

0(c) terms + f~~(x,t)F (x,y
C (t),t)/c. The term G(x ,y C (t) ,t) in

(3.1) has thus been replaced by its average ~ (x,t) modulo an

0(C) term. This was the reason for the addition of the f~ term.

A similar “averaging” scheme will be used to replace the

f~~(x,t)F(x ,y C (t),t)/c term by the rest of Af modulo 0(c). This

will be done in two steps by using the f~ and f~ defined below.

Proceeding , define f~ by

(3.3) f~~(x,t) = 

~~ ~~I c

t+9 t+5 t+5

~~~~~

5

= C J E~f~ (x,t+c2s )F ( x~y (~~*s),t+c2s)ds = 0(c).

0 C

Furthermore , f~~(~~,t) is differentiable in x and f~ (•)

C ~~~A
C) and (again , setting xC (t x)

_ _ _ _ _ _ _ _- -~c~~
-
~
.
~
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(3.4) £C f~~(x,t )  = _ f~~(x,t)F(x ,y C (t),t)/C + 0(C)

+ (fC (x t))I [G(x ,y C (t),t) + F(x,yC (t),t)/c].

It can be shown that the gradient 
~~~~~~ 

can be obtained by dif-

ferentiating with respect to x under the integral in (3.3). Also

(f~ (x,t ))~ G(x,y
C (t) ,t) = 0(c), and we ignore this component

henceforth. The first term on the right-hand side of (3.4)

cancels the last term of (3.1). To get the p—u rn result required

for Theorem 1, we need now only choose f~ to “ cancel the effect

of”

(3.5) (f~~(x,t))~~F(x ,y C (t),t)/C = ifE~~(f~~(:,t+s)F(x,yC (t+S),t+s))xd5

[F(x ,y_ (t),t)].

C

Define A~f (the average value of ( 3 . 5 )  - change variables

s/c 2 -
~ $ and use the stationarity of y( )) by

(3.6) A~f(x,t) = jEF~~(x,y(0),t)[f (x,t+C2S)F(X,Y(S),t+C
25)]Xd5.

(3.6) exists by the strong mixing (A3) and the fact that

EF (x ,y(s),t) 0. As c ‘ 0, (3.6) converges uniformly in x, t

to the integral in (2.4).

Now, define f~ (x,t) by

_._J
- -~~~~~~~~~~

w_
~~’ 

r1.u 
~~
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f~ (x ,t) = Jas{Jdu E~FI (x,y
C (t+s),t+s)[f~ (x,t+s+u)

F(x ,y C (t+s+u),t+S+u)]x 
— A~ f ( x ,t+s)J

C~ Jd5{JdU E~ F ’ (x ,y(~~+s) ,t+c2s) [f’(x ,t+c2s+c 2u)

F(x ,y (
~~~
*s+u),t+C

2s+c 2u))
~~ 

— A~ f ( x ,t+c 2$)}

= 0(62).

The integral exists and equals 0(c2) by the centering about

the mean value A~f, the strong mixing (A3) and the compact sup-

port of f. Now,

p—1im[f~ + f~ + f~I 
= 0,

p_lim (ACfC ( )_  (~/3t+A)f(x~~(), )]=0 ,

and Theorem 1 yields the convergence of finite-dimensional dis-

tributions. The tightness argument is the same as that in

8 , Theorem 2]. The proof concludes by noting that now all

• the conditions of Theorem 1 hold. Q.E.D.

Unbounded y(~) and form F(x,y,t) = F(x,t)y, G(x,y,t) =

G(x,t) + G0(x,t)y. The treatment of the unbounded (e.g.

Gaussian y(.)) case is similar to that of the bounded y() case,

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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but somewhat more stringent conditions need to be imposed on

the form of F.

Define v(t) = fEty (t + s ) d s , where Et denotes conditioning
0

on y (u ), u < t. Let there be some p > 0 such that

(Al’) sup E(JIE tY (t+s) Ids)
2
~~ <

0

(A2’) EJy(t)~~2+~
) 

< ~~~~, E y ( t )  E 0 ,

(A3’) sup E(J dslEty(t+s)v’ (t+s)—Ey(t+s)v ’ (t+s) I ) < ~~ ,

0

(AU ) y(~ ) is stationary and right continuous,

(A5’) F, ~~~~, G0 are continuous together with their second

(f i rst for 
~~~~, G0) partial x—derivatives.

Conditions (A1’)-(A4’) are satisfied by any process which

is a linear combination of the states of

(3.7) du — Audt + Bdw,

A asymptotically stable, w(•) = Wiener process. Since such •

processes constitute the class of Gaussian processes with

rational spectral densities, (Al’)— (A4’) are certainly not res-

trictive.

I I
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In ( 8], the unbounded y() case was treated in Theorem 5,

and G
0y was not explicitly included. The proof there goes

through without any additional conditions or difficulty if G
0y

is added - provided that G0 has continuous x-first partial

derivatives. In that proof, it was difficult to work with un-

bounded F, ~ when y () was unbounded , so the followin g assump-

tion was added (adapted to our case here).

(A6’). For each N, there are functions FN , ~N G~ equal

to F, G and G0, resp., in SN = {x: x~ ’~N }, but

bounded and smooth (as smooth as F, L G0 are)

out of SN, and such that (A4), (AS) hold.

This condition is normally satisfied and ho].da in our examples.

The reference to (A4), (A5) can be dropped if the approach in (111

is ueed (it is then replaced by uniqueness of the solution to the

it6 representation of x(.)).

Theorem 3. Under (A2), (A1’)-(A6’), and x6(O) + x(0) in distri-

bution, the finite-dimensional distributions of {x C ( . ) }  converge

to those of x ( s ) .  If y ( . )  is given by a linear combination of

the states of (3.6), then (x6(.)} is also tight and {x C
(.)} ~~

x(~ ) weakly in Dr [O,~~).

The proof is similar to that of Theorem 2. Given

f C 
~~~

‘

~~~~

‘ 
, we construct f C as in Theorem 2 and prove the p—lim

requirements of Theorem 1. See [ 8] for the details in the

• non-time-varying case.

_ _ _ _ _ _  _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _  
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Extensions to (2.2), (2.3). When F and G depend on c,

the procedure is exactly the same . Given f C we construct

fC as done in Theorem 2, making sure that the integrals are well

defined and of the proper order in C , and replacing G , F by G ,

F
~
. We need EG6 (x,y(0),t) 

+ G(x,t), a continuous function ,

uniformly on bounded (x,t) sets, and that for each f C ç~~ ’~

(3.8) ft (x,t) + G ’ ( x , t ) f
~~

(x , t )  + J E  F’(x,y(O),t)

converges uniformly on bounded (x,t) sets to (3/3t+A)f(x ,t).

Example (c) (Section 6) requires a slightly different exten-

sion , but the general idea is the same.

4. The Phase Locked Loop

The standard PLL is represented in Fig. 2 and is , perhaps, the

simplest application of the foregoing ideas. Via suitable

choices of D, E, C, Q all the usual filters can be constructed .

We f irst do the case D = E = C = 0 , Q = 1, which yields the

standard form of the first-order loop [12]. The general case

is treated in precisely the same way , and is given below. The

t*W~~~ ~~~~~~~~~~~~~~~~~~ W~~~~~~-~~~~~~F L~~~~~~ --~~~-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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func t ion  O ( )  denotes the input phase process and e(•) its

estimate , as determined by the loop. Then

(4.1) Q~ = ~~~[ s i n ( 9 — ~~~) + sin(04- 06+2w
0

t ) 1  + K cos(w0t+U
C ).fl C (t) ,

and we have the situation of either Theorem 2 or 3, under broad

conditions on y ( • ) ,  where we use n 6 ( t )  = y
C (t/ c 2)/c.

The usual method of getting an approximate diffusion equa-

tion proceeds roughly as follows [12]. First the “double

frequency ” terms are dropped (which is justified for large 
~~~~

‘

irrespective of the filter form, as we see below), then it is

argued that since ~~~~
( . )  varies “much more slowly” than nC (.), one

can replace ~~~~ by a white Gaussian noise of the same power

per unit BW that ~ C (.) has within the (say) pass band of the

filter.

Actually , as the BW of ~ C (,) increases (justifying in a

sense the “increasing ” independence of n6 (t) and O E (t)), the

magnitude of ~ C (.) must increase (see Section 2) making the

replacement of nC () by white Gaussian noise a little worrisome .

In fact, it was a “paradox” arising from a problem of this sort

which apparently led to the original Wong-Zakai [ 3 1 work.

The weak convergence method of Theorems 1-3 explicitly yields

the correction term , and o~ing to the nature of weak converg-

ence , the distributions of many functionals of the limit are

close to those of x6 ( ) ;  for example , first exit times from

• ~
1—- -
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appropriate sets. Indeed , in order to study approximations to

path properties of xC () via x ( ), weak convergence seems
to be the appropriate technique. This is an important advantage

which the traditional methods do not have.

Define

R = 
J
Ey (0)y(s)ds,

and , in order to fix ideas, let y(~ ) sat isf y the noise conditions
of either Theorem 2 or 3. All the other conditions of these

theorems hold. Then the theorems yield that {
~~~~

( • ) }  converges
weakly to the process ~~(.) with the operator (a /st-I-A) given by

(4.2) (3 /3t+A)f(~ ,t) = f ~~
(
~
,t)

+ f
~~
(
~~
,t) ~~~~~~~~~~~~~~~~~~~~~~~~~

+ f
~~
(
~
,t) [—K 2Rcos (w0t+~ )sjn (u30t+~ )J

+ K2Rcos2(w 0t+~ ) f (~ ,t).

The quantity 2R is roughly the power per unit BW of
t

nC (.) for small c. Also, as c -
~ 0, fn

6(s)ds xC (t) converges
0

to a Wiener process with infinitesimal covariance 2R. To see

this , set = n 6 , and use Theorem 2 or 3 as appropriate , to get

_ 
_ _  
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that x6 converges weakly to a process x(~ ) with infinitesima l

operator (~/~t+R a
2/3x2), i.e., to a d i f f u si o n

dx = /~~ dw

where w() is a standard Wiener process.

From the form of (4.2) it is easily seen that the limit

O(•) is a Markov diffusion with an Ito process representation .

In particular , there is a standard Wiener process B (s) such

that ~~
(.) is represented by

(4.3) d~ = ~~ (sin(O—O)+sjn (O+~+2w t)]dt0

- K2R cos(w0t+~ )sjn (w 0t+O)dt + K/~~ cos(w0t+~ )dB.

The “correction ” term , the second one on the right, is not

accounted for by the traditional analysis, and arises due to the

non-independence of B C (t) and nC (t). It is proportional to K2R.

For large power/unit SW of n6 (), or large system gain , this

term might be of importance.

The general rth-order loop. For general D, E , C, Q in Fig.

2, 06 = CvC + Q{r.h.s. of (4.1)) and the limit process 
•

(v(.’),~~(.)) is representable by an ItO equation of the form

(4.4) d(,~) = (~ )v dt + (~ )[r.h.s. of (4.3)].

~_ _  
-
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The result for the general filter is just as easy to get as the

result for (4.1), since the general filter only affects the G

term (in the notation of (2.1).

The limit as w0 
-

~ ~~. We consider (4.3) as -, 
~~. The

same result holds for (4.4). It is not hard to see that the two

middle terms of the right side of (4.3) should disappear as

-~ c
~~, but it’s a little harder to see what to do about the

cos (w
0
t+O) coefficient of dB, since this coefficient depends on

0. The result will be the “traditional” one, but it is often

“products of white noise and state variables” . Write the solu-

dangerous to use heuristic methods to treat problems involving

tion to (4.3) as ~(w 0,~~). We have the following theorem.

Theorem 4. {O (w 0,~~)} is tight in D[0 , oo) and as + 
~~~, it

converges weakly to the process &() given by

( 4 . 5 )  d~ ~~ s i n ( O— O ) d t  + Kv’~~ dB.

• Proof. Apply Theorem 1 directly. The indexes the

sequence rather tha C. The proof will be outlined only. The— 

l(w 0, t )
state is x (t) = C ) .  All functions - (cog(w

0t+~ ),

sin (w0t+~ ), etc.) in (4.3) are Lipschitz continuous in & , uni-
formly in t, w0, and all are bounded. From this, we can easily
show that there is a constant C such that

EIO(w 0,t+s)—~~(w 0,t) i~ < Cs2, all t, s, w0. 4
- i  

_ _

_ _ _ _ _ _ _ _ _ _  

_ _ _

I-I— 
— —1—

~ , ~~Jf~u~~~
_ i1TgrT .~- - -

_ _ _ _ _ _  

rt~~ ~~~~~~~~ - _~~~~~~~~~. ~~~~~~~~~~~~~~~~~~~ ~~~~ — 4



- .2?-

By [2 , Theorem 12 .3] ,  this implies tightness of 1 6 ( u ~~, - ) } .  Let

Et denote 
conditioning on B(s), s < t.

Next, f ix f C ~~~1~~3 Def ine

f ° (t )  = 

~~~~~

- J E
t

f (
~~

(w
o

,t+s ) ) , t )ds .

Then it can be shown that f ~ 9(A ) and that

wo w0 — 

Etf(0(w 0,t+2rT/w 0
),t)_f(0 (wO~

t)
~~
t)

A f (t) —

2ir/w

+ 
~~~~~

- I E f ( 0 ( w  , t + s) , t )ds .
W A )  

t t  0
‘J o

Owing to the uniform Lipschitz condition , we can show that

p—lim[f °(’) — f(&(w0,~~), )] = 0 ,

p-lim[A °f °() - (~/a t+A)f(~~(.),.)) = 0 ,

by which Theorem 1 guarantees convergence of finite-dimensional

distributions. This, together with the tightness , guarantees

the weak convergence. Q.E.D.

—
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5. Adaptive Antenna Arrays (13], [14], (15]

For another illustration of the general idea, we consider a

standard problem in adaptive antenna arrays. Let the array have

r elements and input vector z
€ (.) {z~~(.), j 1 ,...,r }, where

zEE (.) = s . ( ~~) + n~~(~~) and s~~
(t) = A cos (U 0t+q~~), 

where the {~~~}

are assumed known (known signal transmission direction). The

input to the jth (each j )  antenna is split into two parts, one

part passing through an ideal ir/2 phase lag device whose output

we denote by zE (.) = ( . )  + s.(). The 2r outputs are weighted

and added to yield the “array output” XC (.).

Define ~
C 

= ~~~~~~~~~ , ~~~~~~~~~~ (zC ,i 6), denote

the respective weights by W = (w1,. ~ •~~
W
r~ “l’ ””r~ 

=

(w ,~~) and set S = (Sl~~ •~~
SrD ~~~~ ~~r

) = (s,~~).

The object is to adaptively adjust W in order to adaptively

maximize the signal-to-noise power ratio in the output

x6 = w~z
C 

+ = W’Z6. Again, for convenience, suppose that

the noise takes the form n C (t) = y(t/c2)/c y
E
(t)/c. Let

and ~j C denote the covariance matrices of the vectors (y(O),~~(O))

and (n6(0), nC (O)), resp. Then W = ~o/6
2. Assume that > 0

• (in the sense of positive definite matrices). Then the optimum

weight vector equals W0 = k~~
1S0, where k ~ 0 is any constant

and S~ = {cos4~~ j<r , sin4~~, j <r }.  Define yt (.) = (y6(•),~~~(.)),

y(.) = (y(.),~~(.)) and M~ (~ ) = Z6()(Z6(~ ))’. Then gC ()

EM (S ) = ~i0/c 2 + (s(.),à(.))(s(•),~~(.))’. The scheme of Fig.

3 is a standard method [14], [15] of adaptively approximating

I-
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the optimum W0. The describing ordinary differential equation

is (g, g0 are positive 
constants, T is a time constant) (5.1),

where W () should, we hope , converge to something “close to”

(5.1) TW
C 

= —w6 — gzCXC + g0S0

—(gZ6 (Z6)’+I)W6 + g0S0

A standard method of treating (5.1) (see, e.g. (14] — or

papers in [15]) involves first dropping the signal component

of Z~ , and then arguing as follows: since M
6() is wide—band

and WC (.) is much smoother than MC (.), the two are essentially

independent, so assume this, take expectations in (5.1) and

replace (5.1) by the resulting equation (5.2), which ought to

be (approximately ) an equation for the mean value Wc(.) of

wC (.).

(5.2) = -[gi~i~+i]~~ + g0S0.

The asymptotic solution to (5.2) is W C _ g
0[gM

C+I] 1S0 which is

close to the optimal value if g is large.

From a mathematical point of view, there are some difficul-

ties with this line of reasoning - even allowing for the

usually justifiable neglect of the SC .) terms in (5.1). As the

SW of ~~C ( . )  increases, thereby “justifying” the “almost indepen—

dence” assertion , the covariance I1~ must also increase (see 

~~~~~
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- 

-
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Section 2), so it’s not immediately clear what one can say about

the expectation of the product of MC (t) and W6(t). To see the

problem more clearly , consider the scalar case TWC =

_ (g(nC (s))2+1)W6+g0S0 (where we set aL’) 0), solve it and take

expectations to get

(5.3) EWE (t) — E (exp - f (g(nC (s))2+1)ds)wC (O)

+ J da B exp - J[g nE cu))2+l)du g0S0
,

which can differ considerably from the solution to (5.2) for

small c.

We now set the problem up in a way that admits an asymptotic

analysis (as c 0). Clearly g must be inversely proportional

to c for otherwise i~~ -~ as c -
~ 0. Suppose that an automatic

gain control mechanism of some sort is available and that we
obtain an estimate of the power in M6 L.), which is propor tiona l
to 1/c2. Thus, let g = C2K for some K > 0. Write c5M~ (.) =

M (•) — EM~~(.), and rewrite (5.1) in the form

(5.4) t*~ = ~~L c
2IC~i~~~+ ~

2K 6i4 + 11W 6 + g~~S0

= — [K~.i0 + ~
2KSS’ + 6K(YCS~+SY

C
~ ) + K(YCYCI _M

0)+I]W
C

+ g0S0.

r
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Define 6M0
(— ) = Y( )Y’(-)—14

0 
and 15N~~(t) = 6M0(t/c

2). Then

it is clear that (YL-),5M 0L)) plays the role of the 
noise

yL’) of Theorems 2 and 3. Theorem 3 (extended to (2.2)) is applic-

able here , and its conditions are better than those of Theorem 1

for this case. If y(.) satisfies the (reasonable) conditions of

Theorem 3, then {W6(.)) is tight and converges weakly to the
I

solution of (5.5) as c -
~~ 0. Here the limiting diffusion is

degenerate because there are no 1/C terms in (5.4):

( 5 .5 ) = — [K~i0+I1~ + g0S0.

This type of argument, with the appropriate scaling of g, justi-

fies the end result of the traditional treatment, namely going

from (5.1) to (5.2). Note that, owing to the degeneracy (the

limit is an ODE), the f~ component of f C in the proofs of

Theorems 2 or 3 is not needed , and owing to this (A3’) can be

dropped from Theorem 3. We note in passing that the scaling

g -
~ (K/average power) is often used in practice due to “dynamic

• range” consideretions. So our scaling conforms with practice —

even if this particular practice is not traditionally used in

the development of (5.5), it is actually required for its jus—

tification.

First—order noise effects. The system (5.4) can readily

be centered and scaled in order to get the first—order noise

effect. Define U6 L’) = [W 6(.)-cJ(.)]/c. A comparison of the

_ _ _ _ _ _  ___________  
_ _  

A
____________________________ — —.—— __________

,_w “1uI1F~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.-
‘-
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following development with that, say, in [14) reveals some of

the mathematical shortcomings of the usual , more heuristic
approach . Then

(5.6) = —K[M0+I]U
6 _K(YCS~+SY

c
~~)W

C_ KeSS~W
C

— K(15M0/6)W — K6M0tJ , U6 (0) = 0.

Theorems 2 or 3 can be applied and , again , (Y (-), 5M0(~~)) plays

the role of y~~ ) in those theorems. If (Y( ),15M0(.)) satisfies

the conditions on the y(~ ) of those theorems, then {U C ( . ) }  is

tight and converges weakly to a process U(•) with the Ito equa-

tion representation

(5.7) TdU = -K[f1
0+IJUd t + K dB,

where B() is a non—standard Wiener process whose covariance can

be obtained from the {ajj} in the operator A in (2.4) in the

following way.

The operator (A+a/at) is given by

(A+3 /at)f(u,t) = ft(U,t) + f~~(U , t ) [ — x (~i0+ I ) u )  + (5.8), where
(5.8) is the integral term in (2.4) (note 

~~~
( • )  is not random)

_ _  _ _ _ _ _  

—
~~~~ ~~~ w- - - — ~~__.-ww~~~

_
~ - ---- ~~~~~- 

- -_ _ _ _ _ _ _ _ _ _  
- .  -



- 35_—

(5.8) K2 J E ~
’ (t)

~
M6(O)f (U,t)oMo (s)w(t)ds

trace fuu Wi t) J E&40(0)~~(t)’~’(t) 5M~ (s)ds

~~~ ~~~~~~~~~~~~~~~~~~i,j

(If the {~~~~(t)} in (5.8) is not symmetric, then symmetrize it

so that a 3~ a~1 .) The “infin itesimal” covariance of

B(t+dt)-B (t) is {~~~~(t)}dt. Then , to first-order terms and with

wide-band input noises, W(t) = W(t) + cU (t ) . Note that the limit

equation (5.7) does riot have a “correction ” term since the 1/C

term in (5.6) does not involve TJ~ . The lack of a “correction ”

term is not a priori obvious, however.

Convergence on [0,°°). Normally , the part of U
6() that is

of most interest is the “tail” . We would like to know, for example ,

that the distributions of U6(t), t > T, are close to those of

the stationary solution to (5.7) for small c and large enough

T. Weak convergence does not quite give this type of result.

However , in this case , a useful result is not hard to get. We

only state it - the details of proof of a similar case are in

• [ 9 ] .

If y ( )  is a bounded process, then it can be shown that

(5.9) sup E~U
C (t)I& is bounded

t>0 , C small 

, , .— — ~~~~~~~~~~~~ -

— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~ 
-
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and

(5. 10) {0 6 ( T + - ) ,  T>0 , c smal l)  is t ight  in

and U~~(T+-) tends weakly to the stationary 
solution to (5.7), as

C - *  0 a n d T -~~~~in any way at all.

A proof is in [9]. (5.8) is the key, and is obtained

via a Liapunov function stability analysis of (5.6).

The Liapunov function V C V), constructed according to a

method in [9], has the form V
6(~ ) = V(•) + V~~(-) + V~~(•) +

V~~(), where V (s) is a Liapunov function for the deterministic

system (5.5) and v6 is a perturbation calculated from VL ) more

or less the way f6 was calculated from fL) in Theorem 2. The

ability to obtain results of the type stated in (5.8) arid below

it is a very useful byproduct of the method discussed in this

paper. In fact, the traditional method of analysis of this prob-

lem assumes some sort of asymptotic stationarity and stability [141 .

6. Filtered Hard Limited Signal Plus Noise

For the final example, we consider the case of a continuous

signal plus noise s (t) + n6(t) passing through a hard limiter

(level L) followed by a band pass filter. In a classical paper,

Davenport [16.] treated a form of this problem where s(t) =

A cos pt and n6 (.) had total power N and a spectrum in a fixed

band centered around p. He obtained specific values for the

ratio

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
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(6.1) [(signal power)0~~
/Noise power out - / ( (s i gnal power) • /N]
in a band around p in

in the two limiting cases of N -
~ 0 and N -

~

Our assumptions are a little different. Here, s(.) is an

arbitrary continuous function. Again we set n6 (t) = y ( t/ C2)/C

and pass s(t) + nC (t) through a hard limiter and then through

any filter which has a linear differential (or even nonlinear,

if we wish) equation representation. The stochastic differen-

tial equation which represents the output is derived , and from

it we can readily obtain a limit value for an input-output ratio

similar to (6.1). In order to keep the notation simple, we

first suppose that the limiter is followed only by an integrator .

As in Section 4, the general case is handled in exactly the

same way; the form of the filter does not affect the method .

The output x6(~ ) is given by

*
6 

= K
6sign(s(t) + n6 ( t ) ) ,

where K6 is a scale factor whose value wil l not affect the power

ratios. In fact, it is convenient to use K6 = L/c, which we will

do. Then

(6.2) sign[s(t) + y ( t/ c 2
)/ c ] .

I -

c -
H

I P 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ — —  - — ~~~~- 

—
~~~~~~~~~~~~ — — — -.

~~~~~~

_ .~~~ : ~~~~
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Although (6.2) differs from the forms (2.1) used in Theorems 2

and 3 , part icularly because of the 1/C factor appearing both

inside and outside the sign function , Theorem 1 can sti l l  be

used and a proof similar to that of Theorem 2 gets the correct

limit and the construction of the f E (.,)• We go through some

of the details below, in order to illustrate the versatility

and robustness of the technique. Since xE (.) is not involved

as either an argument or coefficient of the sign function , the

scheme is not hard to use.

To facilitate computation , we let y(.) be Gaussian with

correlation function ~
2 exp -a l t i (a > 0). It will be shown

that as c -
~ 0, x6 (.) converges weakly to a process x(~ ) which

has the Ito representation

(6.3) dx = Ih/~7~ ( 5 ( t ) )dt  + r~/2 in 2/a dB.

If a filter of the form used in Fig. 2 follows the limiter (where

we set Q = 0 to avoid white noise in the output), then the limit

equation is

1

(6.4) dv = Dvdt + Edx

z(t) = output = Cv (t).

- 1  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _~~~~~~~ ~~~~~~~~~~~~
—

~~~~
-- - -

~~~~~~~- 
~~~~~~~ J ’.—~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ au. .
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~~~ ut-ou-~put signal-to-noise ratios. The integrated input

noise I n 6(s )ds  converges weakly (as in Section 4) to a Wiener
0 -~

process whose covariance at time t is 2c ’~t/a = 2Rt =

2t f Ey(O)y (s)ds. Thus , as C -
~ 0, the input power per unit BW

(in any finite frequency range) converges to 2o /a. In order to

get a concrete power ratio comparison with Davenport’s result ,

set s(t) = A cos pt here only. Consider the form (6.4) where the

system dimension and D, E, C are chosen to get a good approxima-

tion to a zonal filter whose pass band includes p. The filter

gain is unimportant since it does not affect the ratio, so we

assume that it is unity in the pass band. The noise power per

unit BW in dx/dt is 2 in 2/a, the limit output noise power

per unit SW as c -
~ 0. The signal power in dx/dt is L2A2/ir~

2,

the limit output signal power as c -
~ 0. Thus

(Signal/Noise power per unit BW)0~~/ (Signai/Noiae power per
unit BW)in

L2A2 L2 2 in 2 A2 2a2 2(6.5) = (;~~~~._)/ (  
a 

= u in 2

which is slightly greater than Davenport’s (1] limit ratio (as

hi sN - ’~~) of ic/4.

This closeness of the two results is very pleasing. Since

our assumptions are dif ferent, it suggests that our scheme might

yield results that are meaningful under other circumstances

where similar averaging phenomena occur . In our case, the

t 
_ _ _ _ _

- ,•.—‘- .—-- . — _~*__ - —.- -———a —~--~•—————v- ~~~~~~~~~~~
- - - r _

~~_.-n~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 
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-
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input noise energy per unit BW is held constant and the BW

increased . In [16], the BW is held fixed and the power per unit

BW -
~ 

(to get the ii/4 limit ratio). In [l6 ]~ the ratio seems

to decrease as the input noise power increases, which is consis-

tent with our result 2/it ln 2 > it/4 , since our power/unit BW is

held fixed. The “averaging ” phenomena in both cases are

similar — in that the existence of the limit makes implicit use

of the “wild” fluctuations and “large” magnitude of the noise.

In a promising study currently under way , a phase-locked

loop with a saturator like non—linearity is being studied and

compared (favorably) to the more standard systems. Asymptotic

methods such as described here are used. They seem to be the

only available tool.

Now an outline of the proof that the x6() of (6.2)

converges weakly to the solution of (6.3) will be given. The

proof for the general filter case with limit (6.4) is about the

same.

Theorem 4. Let s(.) be continuous, yL ) Gaussian with covariance

a2 exp — a l t i and mean zero. Then {xC (.)} is tight and as c 0,

converges weakly to the process x(•) given by (6.3) (integrator

only used) or (6.4) (general filter following the limiter used).

Proof. We stick to the integrator case. The general case

requires only carrying an extra “drif t” term , and is done in

exactly the same way . E~ denotes conditioning on y(u/c
2), u < t.
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Part 1. Set y(~ ) = OZ
a (.), where Za ( . )  has correlation

exp -a (t~ and let z denote a random variable with the normal

N(0 ,1) distribution. The factor L is unimportant, so set L = 1

here. We evaluate G6(s) = E sign(s+az/c). Then

( 6 . 6 )  G (s )  = [e r f ( ~~-) — e r f ( — ~~ )] = /~7~ ~
. C + 0 ( 6 )

whcre 0(C)/c -
~ 0 as C — 0, uniformly in s in any bounded set.

Defi ne G ( s )  = /~7~ (s/ a)  and

~~~~~~~~~~~~~~~~ — E sign(s+cTza (t)/C)]

= [sign(s+cza(t)/c)] — Ge(s).

Then

(6 . 7 )  *~ = + 0(e) + F6(s,eza(t/C2)/c)/C.

Some details will be omitted. We note that F
~~
(s,t) is p—right

continuous since y (~ ) has a continuous density - similarly with

other functions below for which this property is needed.

The aim now is to apply Theorem 1. Given f € p1
,3

{f 6 ’ must be found such that the “p-u rn ” requirements of

Theorem 1 hold. The other conditions of Theorem 1 are satis-

fied , whore A is the operator of the process (6.3). The method

of proof of Theorem 2 will be used to get both {fE} and a.

I
- • - - ~t~ • - V - -
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- S’milarly to the situation in Theorem 2, f6 will have the

form (no f~ is needed , since G
~ 

is not random) f6(t) =

f(x6(t)) + f~~ (x 6 (t ) ,t ) + f~~(x 6 ( t ) , t ) .  Setting x = xC (t),

s = s(t) for not~ticnal simplicity , we have

(6.8) A6f(x,t) = f
~~
(x,t) + f~~

( x, t ) [G 6 (s )  ; ~~~~~

Define

f~~(x,t) = ~~ jfx (x,t+u)E~Fc
(s(t#u), aZa(~?)/C)dU

= c J ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Owing to the fact that F6 is “centered ” about its expectation

and to the exponential correlation of y ( . ) ,  the integral ex ists

and p—lim f~ 0. Also, f~~E ~~~~
(
~~~~~) and (use x = x

6 (t ))

(6.9) ACfC (t) = _f
~~
(x ,t ) F

6 (s(t),

~ J ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0

F (s(t),az &(t/c 2)/ c )
. ( 

£ 

c + G6(s(t))].

I
- -

~~~~~~~~~~~ : ~~~~~~~~- 
- - -

•.‘
~~~~~~~~~~~
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• . 6 o “CCalculations such as showing f1 E J(A ) are not hard here,

since F6 does not depend on the state x. Similarly for f~ below.

The first term of (6.9) cancels the last term of (6.8)

(which, of course, is the reason for introducing f~~()). The

integral of (6.9) exists and equals (change variables u/c2 -
~~ 

u)

(6.10) If xx~~ t 2 F c (t 2
~~ 0 ( ~~~~/~~~

[F 6 (s(t),az
a (t/c 2)/c)+eG (s(t)fl.

The cc
~ 

term goes to zero in the p— litn sense as -, 0, and it

is ignored henceforth. Still following the method of Theorem

2, let A~f(x ,t) denote the expectation of ~6.l0) (minus tne

cG term). Then (the integral exists, again by the centering

of F6 and the exponential 
decrease in the correlation function

of y(—) )

A~~ (x,t) = jfxx (x ,t÷6
2u)EFC (c(t,6

2u),aza(u)/c)FC (s(t),aza(0)/C)du.

Next, define f~ (x ,t), the “centered and averaged” last term of

(6.9) (minus the G6 term) , by

f~~(x,t) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• 
F6 (S(t+V),~~Z

a (~~~ ))]_ A~f (x, t+v)’. 

~ ~~~~~~
-
- ,•,~~

- •- -
~~~

- - -c-”- -- - : ~- 
_~~~~_~~~~~~~~

,__ -
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It can be shown that the integral exists , again by use of

the centering about the mean A~f(x,t+v) of the inner integral ,

and the exponential correlation function . Via the usual

change of variables u/C2 
— u , v/c 2 v , we get that

E~f~~(x,t)I = 0(62). Also f~ ~~~9
(A6 ) and (use x = xE (t))

A6f~~(x,t) = minus first term on r.h.s. of (6.10) plus

terms whose (absolute ) expcctation is 0(E)

+ A~f(x ,t).

Then , concluding ,

F
(6.11) p—lim [f~~(~ ) — f(x6 (-~- ) , ) ]  = 0 ,

p_lim (A6f6 (1)_f
t(x

6() ,.)_A ~f(x
C (.),.)_G

6
(s)f~ (x

6(.) ,~~ ) ]  = 0.

In Parts 2 and 3 below , it is shown that ((6.12) defines A0)

f (x ,t ) l n  2
(6.12) A~f(x,t) 

XX 
a 

— A0f(x,t) uniformly in x for 
each t.

Thiø, together with G6(s) 
-
~ G(s) uniformly on bounded s-sets

(hence f
~
G6 

-
~ f

~
G uniformly in x for each t) yields the theorem , since

the process of (6.3) is the unique process corresponding to the

operator

(a/at + A) (h + G(s(t)) }~ + 1(2 lri 2)3
2

—

~~~~~



4’,,

Part 2. Evaluation of A~f. Let z () denote a Gaussian

process with correlation function exp — jtj. Changing variables

u(old) u (new)/a yields

A~f(x,t) = ~-I~~(x,t)

where

(6.13) I~~(x,t) J f xx (x ,t+c2u/a) [QC (t ,u) — R6(t,u)]du,

where

Q6 (t ,u)  = E s ign[s(t+t ic2/a) + ~~
- z(u)] sign[s (t)4z(0)],

R~ (t,u) = E sign[s(t+~~—)+
2
~z(u)) E signIs(t)+~z(0)].

Owing to the properties of the joint distribution of
T

(z(0),z(u)), fIQ
6(t,u)—R 6(t,u)Idu is bounded uniformly in c and

0
T and converges uniformly in c as T -

~~ ~~. (In fact, the integrand

goes to zero at an exponential rate as u -
~~ 

°o.) Using this and

the smoothness and compact support of f~~ (- ,~ ), we can replace

f
~~

(c ,t462u/a) by f
~~~

(x ,t) in I~~(x,t) without altering the limit

as6~~~ 0.

• By the above arguments, if Q6(t,u)—R 6(t,u) has a limit for

each t as c -‘ 0 , then

(6.14) Urn A~ f(x,t) ~ 
J
lim (Q6(t,u)_R 6(t,u)3dua 6,0

- - - — -•;~ 
—=— 

~~~~~~~ — — — 
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and also that in order to show (6.12) it is enough to show that

the integral on the right equals ln 2. First the existence of

the limit will be shown. Let + 
= s(t+c2u/a) and s = 9(t).

Then

Q 6 (t ,u )  = P {z ( u ) > — s ~ C/a , z ( O ) > — 5 c / ~~}+p~ z ( ~~) ~— S C/C , Z ( f l )  < — s c / a )

—P{z (u) >—s4 C/c, z (0) ~—sc/c}—P{z (u) <—s~ c/o ,z (0) ~—sc,
1o }

£ + +R (t,u) — (P{z(u)>—s c/a}—P{z(u)-<—s c/a))

Obviously as c -‘ 0 , R 6 (t ,u) 0 (even uniformly on bounded

~ 5+~ t, u sets , although we don ’t need this). Also (even

uniformly as above )

Q6(t,u) -÷ P{z ( u) >0 ,z ( 0 ) > O ,} + P{z(u)<0,z(O)<O}

— P C z ( u ) <0 , z ( 0 ) > 0 }  — P{~~(u)>0 ,z(O)<O}

— 2[P{z(u)>0,z(0)>0} — P{z(u)<0,z(0)>0})

2J(u).

Define

*- 
~~ • , •I;~~~~~~~~~~~~~~~~ •

,
~ . .

.~ ~~~~~~~~~~~~~~~~~~~~~~ -~~- ~~~ .— - -~~~ -~~~~ J — -~~~—-- 
~—~~~~w- - —~~~~~~~~~~~~~~~~~~~~~ .----- --—--



= JJ (u)du .

Then we have proved that

2f (x,t)
A~f(x ,t) 

XX
a 

~

_

~

_ 

f 
J (u ) d u  = A0f(x,t)

uniformly in x for each t. We need only evaluate J0.

Part 3. Proof that = (in 2)/2. Use polar coordinates

and write p = e~~ . Then thc joint density of (z(0),z(u)) is

2 l/2 (exp -r
2g(8)/2)r,

2 i t ( l— p )

g ( e )  = ~ 
2 [cos 2 0— 2p sinO cosO + sin 2 0] = 

1 
2 [ 1—p sin 2O] .

1—p 1—p

Also

J’(u) E P{z(0)>0,z(u)>O} = J J 1
~2 1/2 (exP —~-—g(O))drdO ,

• f(u) P{z(0)>0,z(u)<O) = J J r 
112(exp— ~---g(O))drdO.

—r ,’2 0 2ii (l—p

Integrating with respect to r yields

• w/2

) — f dO- (l—p 2) 
— 1 l~ do (1—P2)1”2— 

~~ 2 1T( l— p 2 ) 1”2 (].— psj n2O) 
— J 1—psinO 2it 4 ~

By [16, eqn. 298 ],

- ••--

~

•-_ - - - -— -- --•-y - • - •  - -~~~~~~~ _ _ _ _ _ _ _ _

- I l
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J~~(u) — ~ tan ’ 
( 1— p 2 ) 1”2 

— 
~~

- tan ’ 
(1—p2)1”2

Using tan~~x - tan~~y = tan 1( x— y ) / ( l + x y ) [17, p. 48], we have

J~~(u) 
- J (u) = ~~ tan

1 
— ~~ tan~~

1 —1— p
+ tan

1 —l P 1 • —l= tan 
(l- p2)172~ 

— 11

Next, let p = e t and change variables v = e t, t = -ln v , to

get

~ J sin~~~(e t)dt = 
1 ~~-1 V dv

With v = sin w D.7 , p. 417],

= 

~~

- J w.c tn w dw =~~~ ln 2. Q.E.D.

I
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_
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• 
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